

Fabrication and nanomanipulation of nanowires for basic science and applications

Luca D'Ortenzi

Motivation

Bio-sensing

Energy Harvesting

Thermoelectric Devices

Introduction

Metal Assisted Chemical Etching on Silicon

MACE was first observed by Li and Bohn*

- Low-cost process
- Precise tuning of
 Length
 Crystalline orientation
- High crystalline quality
- High aspect ration of structures
- Porosity depends on
 Etching solution
 Doping level

*X. Li and P. W. Bohn, Appl. Phys. Lett. 77, 2572 (2000)

NanoSpheres Lithography

Functionalisation: piranha solution

hcp monolayer of polystyrene nano spheres: original diameter 260 nm

Plasma etching (Ar 75W): final diameter 130 nm

Anti-dot Mask and MACE

22/01/2016 HV mag WD det spot tilt ______ 500 nm _____ 12:43:05 30.00 kV 160 000 x 10.3 mm ETD 3.5 -0 ° Inspect F-Nanofacility Piemont

Surface Enhanced Raman Scattering (SERS) phenomenon

Amplification of Raman signal

 Mainly based on the em field enhancement occurring preferentially in gaps or sharp features at the surface of noble metals.

 Particularly large em field is found in hot spots, in between metal nanostructure separated by a few nanometers

Goal: engineering hot spots

Etchegoin, PG, Le Ru EC. Phys Chem Chem Phys (2008) 10(40):6079-6089

Hu, M et al. JACS (2010) 132(37):12820-12822

SERS substrate

- Substrate fabrication is a critical issue for controlling hot spots.
- Reproducibility and uniformity
 VS enhancement.
- New strategy: flexible coated nano pillars, self-closing ability.
- Various techniques: optical lithography, EBL, FIB, NIL

Hu, M et al. JACS (2010) 132(37):12820-12822

SERS substrate with our SiNWs

- Matrix of standing gold-capped SiNWs
- Tuning etching parameters (time, concentration) allows to control the length of SiNWs
- Aspect ratio: crucial parameter for flexibility

EMPIR project MetVBadBugs 15HLT01 80 nm Au E-gun deposition

SERS substrate with our SiNWs

Capillary force during evaporation of water: leaning of flexible silicon nanowires Aspect ratio 1:10 flexible

Aspect ratio 1:5 stiff

EMPIR project MetVBadBugs 15HLT01

SERS substrate with our SiNWs

EMPIR project MetVBadBugs 15HLT01

Applications

Use of Si nanowires in lithium-ion batteries

Stanford News				Search news.stanford.edu		
Home	All News Faculty &	Staff News For Journalists	About Us	nature		
Stanford Report, December 18, 2007 Nanowire battery can hold 10 times the				nanotechnology		
char	ge of existing	lithium-ion bat	tery	Access		
BY DAN ST	OBER	Cour	tesy Nature Nanotechnology	To read this story in full you will need to login or make a pa	yment (see right).	
Stanford r silicon nai lithium-io	esearchers have found a way to nowires to reinvent the recharge n batteries that power laptops,	use eable iPods,		nature.com > Journal home > Table of Contents		

lithium-ion video cameras, cell phones, and countless other devices. The new technology, developed through research led by Yi Cui, assistant professor of materials

science and engineering, produces 10 times the amount of electricity of existing lithium-ion, known as Li-ion, batteries. A laptop that now runs on battery for two hours could operate for 20 hours, a boon to ocean-hopping business travelers.

Photos taken by a scanning electron microscope of silicon nanowires before (left) and after (right) absorbing lithium. Both photos were taken at the same magnification. The work is described in "Highperformance lithium battery anodes using silicon nanowires," published online Dec. 16 in Nature Nanotechnology.

"It's not a small improvement " Cui said "It's a revolutionany development !

Letter

Nature Nanotechnology 3, 31 - 35 (2008) Published online: 16 December 2007 | doi:10.1038/nnano.2007.411

Subject term: Electronic properties and devices

High-performance lithium battery anodes using silicon nanowires

Candace K. Chan¹, Hailin Peng², Gao Liu³, Kevin McIlwrath⁴, Xiao Feng Zhang⁴, Robert A, Huggins² & Yi Cui²

There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and

implantable medical devices¹. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity

(4,200 mAh g⁻¹; ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than

ARTICLE LINKS Supplementary info

ARTICLE TOOLS

- Send to a friend
- Export citation
- Export references
- Rights and permissions Crder commercial reprints

Ordered microwires as anode in lithium-ion batteries

- Images of the steps for the production of Si microwire array anodes
- 1. Electrochemical etching of pores
- 2. Chemical over-etching of the pore walls to get microwires

- 3. Deposition of a Cu seed layer
- 4. Electrochemical deposition of Cu

E. Quiroga-González et al., J. Electrochem. Soc. 158 (2011) E119-E123.

Si anode

E. Quiroga-González et al., J. Electrochem. Soc. 158 (2011) E119-E123.

Performance

E. Quiroga-González et al., *Electrochim. Acta* 101 (2013) 93.

Our SiNWs as Anode in Lithion-ion Battery

Facilities for battery tests

	C 11	F 11	G 11	Sample 6
Dimensions of Si wafer	5 x 7	5 x 7	6 x 6	7 x 6
(length x width), mm				
Length of SiNWs (µm)	4-5	6	0-15	0-20
Approximate mass (mg)	0.20	0.24	0.35	0.55
Open circuit voltage (V)	2.762	2.576	2.976	2.543
Applied current (µA)	19.1	22.9	33.4	52.5

Charge and discharge curves performed at a rate of C/10 (one Li (de)inserted in 10 hours per Si atom) between 0.005 V and 1.0 V vs Li/Li+ in an organic liquid electrolyte

Electrical characterization

SiNWs obtained via MACE are porous

 Quantum confinement effect can be observed (e.g. Coulomb Blockade*)

 Besides porosity affects electrical properties influencing depletion region, band structure and charge traps

Realization of proper electrical contacts is tricky

*Hamilton et al, Nature 393, 443 (1998) Borini S, Boarino L, Amato G, Appl.Phys. Lett. 89 (13) 132111 (2006)

Electrical characterization: ways of wiring

Wiring with Gas Injector
 System and Focused Ion Beam

Wiring with Electron Beam
 Lithography and conventional metal sputtering

Single SiNWs

I-V curves

FIB/GIS method

EBL method

Single SiNWs

I-V curves

- Higher increment of resistance at low
 T for EBL contacted nanowire
- A reason could be the presence of a barrier at interface

Single SiNWs

Nanomanipolation

Universitat Autònoma de Barcelona

Single NWs and NTs

Nanomanipolation

Acknowledgement

Thank you for your attention

